Abstract. Let X be a Banach space, C a weakly compact convex subset of X and T : C → C an asymptotically nonexpansive mapping. Under the usual assumptions on X which assure the existence of fixed point for T , we prove that the set of fixed points is a nonexpansive retract of C. We use this result to prove that all known theorems about existence of fixed point for asymptotically nonexpansive mappings can be extended to obtain a common fixed point for a commuting family of mappings. We also derive some results about convergence of iterates.