Convergence of the Finite Volume Method for Stochastic Hyperbolic Scalar Conservation Laws: A Proof by Truncation on the Sample-Time Space
Sylvain Dotti Sylvain Dotti
Abstract:We prove the almost sure convergence of the explicit-in-time Finite Volume Method with monotone fluxes towards the unique solution of the scalar hyperbolic balance law with locally Lipschitz continuous flux and additive noise driven by a cylindrical Wiener process. We use the standard CFL condition and a martingale exponential inequality on sets whose probabilities are converging towards one. Then, with the help of stopping times on those sets, we apply theorems of convergence for approximate kinetic solutions… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.