We consider purely singular homogeneous Young measures associated with elements of sequences of piecewise constant functions and with limits of such sequences. We first consider a case when the limit of a such sequence is piecewise constant. The next point involves the sequences of bounded oscillating functions, divergent in the strong topology in L ∞ , but weakly * convergent to a homogeneous Young measure. We also present an example of a fast oscillating sequence, illustrating the result. In the presented results, generalizing to some extent known examples, we try to avoid advanced methods of functional analysis that are usually used when solving problems of this type.