2016
DOI: 10.1142/s0217751x1650072x
|View full text |Cite
|
Sign up to set email alerts
|

Convergent perturbation theory for lattice models with fermions

Abstract: The standard perturbation theory in QFT and lattice models leads to asymptotic expansions. However, an appropriate regularization of the path or lattice integrals allows one to construct convergent series with an infinite radius of the convergence. In the earlier studies this approach was applied to the purely bosonic systems. Here, using bosonization, we develop the convergent perturbation theory for a toy lattice model with interacting fermionic and bosonic fields.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 21 publications
0
2
0
1
Order By: Relevance
“…The presented construction can be generalized to the fermionic lattice models by employing bosonization. For instance, an application of the method [9][10][11][12][13] to the bosonized fermionic model, a model of lattice QED, was proposed in [38]. The problem of the bosonizations of the complex actions has been recently solved in [39].…”
Section: Discussionmentioning
confidence: 99%
“…The presented construction can be generalized to the fermionic lattice models by employing bosonization. For instance, an application of the method [9][10][11][12][13] to the bosonized fermionic model, a model of lattice QED, was proposed in [38]. The problem of the bosonizations of the complex actions has been recently solved in [39].…”
Section: Discussionmentioning
confidence: 99%
“…Кроме того, он позволяет задумываться о решении принципиально новых задач, таких как, например, исследование асимптотик сильной связи. Очевидные с математической точки зрения (сходимость ряда теории возмущений) преимущества данного подхода инициировали попытки его расширения на более общий класс рассматриваемых моделей [9], [10]. К сожалению, в упомянутых выше работах авторы для оценки радиусов сходимости получаемых рядов пользуются, вслед за оригинальной работой [6], неравенствами Соболева вместо более точного анализа, предложенного позднее в работах [7], [8].…”
Section: Introductionunclassified
“…Nevertheless, considering a suitable regularization of the path or lattice integrals [3,4,5,6,7,8,9] or changing the initial Gaussian approximation to an appropriate interacting theory [10,11] one can construct convergent series (CS). Recently, the applications of the convergent series methods to a model of lattice QED [12] and to the continuous Yang-Mills and QCD [13] were proposed. This gives a strong motivation for the detailed studies of the CS.…”
Section: Introductionmentioning
confidence: 99%