Hongkonoids A-D (1-4), the first example of ascorbylated terpenoids featuring a unique 5,5,5-fused tricyclic spiroketal butyrolactone moiety and diterpenoid-derived long chain, were isolated from Dysoxylum hongkongense. Their structures were unambiguously assigned by a combination of spectroscopic data, chemical degradation, X-ray crystallography, CD analysis, and total synthesis. The total syntheses of compounds 1-4 were effectively accomplished by a convergent strategy with the longest linear sequences of 12-14 steps and overall yields of 5.4-9.6%. Notably, we exploited a bioinspired one-pot method to construct the key intermediate 14 from an easily made compound 12 by involving the cascade reactions of an elaborate Claisen rearrangement, deprotections, and a 5-exo-trig cyclization. The desired major epimer 14a was then transformed to the main building block 21. Assembly of 21 and the long chain vinyl iodide 7 was made by an NHK coupling reaction to furnish the framework of 1-4. Some of the hongkonoids and/or synthetic analogs showed significant to moderate inhibitory activities against NF-κB, 11β-HSD1, and sterol synthesis. The most active NF-κB inhibitor 34 exhibited distinct inhibition on the LPS-induced inflammatory responses in RAW 246.7 and primary BMDM cells.