A green and efficient process was developed for the conversion of biomass-derived furfuryl alcohol to ethyl levulinate using eco-friendly solid acid catalysts (zeolites and sulfated oxides) in ethanol. Studies for optimizing the reaction conditions such as the substrate concentration, the reaction time, the temperature, and the catalyst loading dosage were performed. With SO 4 2− /TiO 2 as the catalyst, a high ethyl levulinate yield of 74.6 mol% was achieved using a catalyst load of 5 wt% at 398 K for 2.0 h. The catalyst recovered through calcination was found to maintain good catalytic activity (47.8 mol%) after three cycles, and it was easily reactivated by re-soaking in H 2 SO 4 solution. Catalyst characterization was based on BET surface area, NH 3 -TPD, and elemental analysis techniques.