Let $K_{\mathcal{\nu }}$ be the modified Bessel functions of the second kind
of order $\mathcal{\nu }$ and $Q_{\nu }\left( x\right) =xK_{\mathcal{\nu -}%
1}\left( x\right) /K_{\mathcal{\nu }}\left( x\right) $. In this paper, we
proved that $Q_{\mathcal{\nu }}^{\prime \prime \prime }\left( x\right)
\right) 0$ for $x>0$ if $\left\vert \nu \right\vert >\left(