2024
DOI: 10.3390/math12172668
|View full text |Cite
|
Sign up to set email alerts
|

ConvNext as a Basis for Interpretability in Coffee Leaf Rust Classification

Adrian Chavarro,
Diego Renza,
Ernesto Moya-Albor

Abstract: The increasing complexity of deep learning models can make it difficult to interpret and fit models beyond a purely accuracy-focused evaluation. This is where interpretable and eXplainable Artificial Intelligence (XAI) come into play to facilitate an understanding of the inner workings of models. Consequently, alternatives have emerged, such as class activation mapping (CAM) techniques aimed at identifying regions of importance for an image classification model. However, the behavior of such models can be high… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 19 publications
0
0
0
Order By: Relevance