2023
DOI: 10.1007/s00009-023-02358-6
|View full text |Cite
|
Sign up to set email alerts
|

Convolution Integral Operators in Variable Bounded Variation Spaces

Abstract: Working in the frame of variable bounded variation spaces in the sense of Wiener, introduced by Castillo, Merentes, and Rafeiro, we prove convergence in variable variation by means of the classical convolution integral operators. In the proposed approach, a crucial step is the convergence of the variable modulus of smoothness for absolutely continuous functions. Several preliminary properties of the variable $$p(\cdot )$$ p ( · … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 24 publications
0
0
0
Order By: Relevance