Nowadays, recycling of construction and demolition waste (C&DW) is a challenging opportunity for the management of such end-of-life (EOL) materials through alternative methods to environmentally unsustainable methods (i.e., landfilling). In order to make recycling processes more effective, quality control systems are needed. In this work, the possibility of developing a sensor-based procedure to recognize different demolition waste materials from a recycling perspective was explored. An automatic recognition of different predefined constituent classes of recyclables (i.e., concrete, mortar, natural stones, unbound aggregates, clay masonry units, bituminous materials) and contaminants (i.e., glass, metals, wood, cardboard, and gypsum plaster), as established by an European standard, was carried out using hyperspectral imaging (HSI) working in the short-wave infrared (SWIR) range (1000–2500 nm). The implemented classification strategies, starting from the collected hyperspectral images of the analyzed constituents, allowed for the identification of the different material categories. Two main models were built for identifying contaminants in recyclable materials and categorizing material groups based on technical specifications. The results showed accurate category identification with Sensitivity and Specificity values over 0.9 in all models. The possibility of performing a full detection of C&DW recycling products can dramatically contribute to increasing the quality of the final marketable products and their commercial value, at the same time reducing the amount of waste and the consumption of primary raw materials.