2018
DOI: 10.1117/1.jmi.5.2.024006
|View full text |Cite
|
Sign up to set email alerts
|

Convolutional neural network-based image enhancement for x-ray percutaneous coronary intervention

Abstract: Percutaneous coronary intervention (PCI) uses x-ray images, which may give high radiation dose and high concentrations of contrast media, leading to the risk of radiation-induced injury and nephropathy. These drawbacks can be reduced by using lower doses of x-rays and contrast media, with the disadvantage of noisier PCI images with less contrast. Vessel-edge-preserving convolutional neural networks (CNN) were designed to denoise simulated low x-ray dose PCI images, created by adding artificial noise to high-do… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 15 publications
0
0
0
Order By: Relevance