Convolutional neural network-based pattern recognition in natural circulation instability images
Sandro Minarrine Cotrim Schott,
Marcones Cleber Brito da Silva,
Delvonei Alves de Andrade
et al.
Abstract:Heat removal systems employing natural circulation are key in new nuclear power plant designs for mitigating accidents. This study applies Convolutional Neural Networks (CNNs) to classify 'chugging' instability phases, analyzing 1152 two-phase flow images from a Natural Circulation Circuit. Three CNN models, including one incorporating transfer learning from the ImageNet database, were trained via five-fold cross-validation to fine-tune hyperparameters. This involved comparing models with and without transfer … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.