The increasing reliability and availability requirements of power electronic systems have drawn great concern in many industrial applications. Aiming at the difficulty in fault characteristics extraction and fault modes classification of the three-phase full-bridge inverter (TFI) that used as the drive module of brushless DC motor (BLDCM). A hybrid convolutional neural network (HCNN) model consists of one-dimensional CNN (1D-CNN) and two-dimensional CNN (2D-CNN) is proposed in this paper, which can tap more effective spatial feature for TFI fault diagnosis. The frequency spectrum from the three-phase current signal preprocess are applied as the input for 1D-CNN and 2D-CNN to conduct feature extraction, respectively. Then, the feature layers information are combined in the fully connected layer of HCNN. Finally, the performance status of TFI could be identified by the softmax classifier with Adam optimizer. Several groups of experiments have been studied when the BLDCM under different operating conditions. The results show that the fusion features can get a higher degree of discrimination so as to the presented network model also obtains better classification accuracy, which verify the feasibility and superiority to the other networks.