2023
DOI: 10.3390/app131810512
|View full text |Cite
|
Sign up to set email alerts
|

Convolutional Neural Networks and Feature Fusion for Flow Pattern Identification of the Subsea Jumper

Shanying Lin,
Jialu Xu,
Shengnan Liu
et al.

Abstract: The gas–liquid two-phase flow patterns of subsea jumpers are identified in this work using a multi-sensor information fusion technique, simultaneously collecting vibration signals and electrical capacitance tomography of stratified flow, slug flow, annular flow, and bubbly flow. The samples are then processed to obtain the data set. Additionally, the samples are trained and learned using the convolutional neural network (CNN) and feature fusion model, which are built based on experimental data. Finally, the fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 23 publications
0
0
0
Order By: Relevance