Smart homes may be beneficial for people of all ages, but this is especially true for those with care needs, such as the elderly. To assist, monitor for emergencies, and provide companionship for the elderly, a substantial amount of research on human activity recognition systems has been conducted. Several algorithms for activity recognition and prediction of future events have been reported in the scientific literature. However, the majority of published research does not address privacy concerns or employ a variety of ambient sensors.The objective of this thesis is to contribute to the progress in research relevant to activity recognition systems that use sensors that collect less privacy-related information. The following tasks are included in the work: assessment of sensors while keeping privacy concerns in mind, selection of cutting-edge classification methods, and how to fuse the data from multiple sensors. This thesis contributes to making progress on systems for analyzing human activity and state-or vital signs-for application in a mobile robot.This dissertation examines two topics. First, it examines the privacy concerns associated with having a robot in the home. On a robot, an ultra-wideband (UWB) radar-based sensor and an RGB camera (for ground truth) were installed. An actigraphy device was also worn by the users for heart rate monitoring. The UWB sensor was selected to maintain privacy while monitoring human activities.Considering different ways to represent data from a single sensor is the second topic under investigation. That is, how data from multiple representations can be combined. For this purpose, we investigate various data representations from a single sensor's data and analysis using cutting-edge deep learning algorithms.The contributions provide considerations for equipping a mobile home robot with activity recognition abilities while reducing the amount of privacy-sensitive sensor data. The work also concerns examining the potential privacy restrictions that must be established for the analyzing systems. The thesis contains new methods for combining data from multiple information sources. To achieve our objective, convolutional neural networks and recurrent neural networks were applied and validated using conventional methods.The conclusion of the thesis is that we can achieve good accuracy with limited sensors while maintaining privacy. It is, however, likely adequate for assisting healthcare personnel and caregivers in their work by indicating current activity status and measuring activity levels, providing alerts about abnormal activities. The results can hopefully contribute to older people being able to live alone in their homes with a larger chance of any unwanted events being quickly detected and notified to the caregivers and providers.iii
PrefaceThis thesis is submitted in partial fulfillment of the requirements for the degree of Philosophiae Doctor at the University of Oslo.The research presented here was conducted at the Robotics and Intelligent Systems group at the Departmen...