2023
DOI: 10.1021/acs.jpca.3c03860
|View full text |Cite
|
Sign up to set email alerts
|

Convolutional Neural Networks to Assist the Assessment of Lattice Parameters from X-ray Powder Diffraction

Juan Iván Gómez-Peralta,
Xim Bokhimi,
Patricia Quintana

Abstract: This article presents the development of convolutional neural networks (CNNs) for the estimation of lattice parameters in organic compounds across various crystal systems. A comprehensive collection of 92,085 organic compounds was utilized to train the CNNs, encompassing crystals with unit cells containing up to 512 atoms and a maximum unit cell volume of 8000 Å3. Simulated diffraction patterns were generated for each compound, comprising four diffraction patterns with different crystal sizes. These diffractio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 53 publications
0
1
0
Order By: Relevance
“…In JPC A , the virtual special issue papers span applications to all aspects of chemical dynamics, molecular property prediction, and electronic structure. A large number of contributions within this collection in JPC A address fundamental research into new or adaptation of existing models for applications of ML to physical chemistry spanning many topical areas. Many of the papers relate to using ML/AI and other data-driven models to enhance methods within physical chemistry. A number of contributions address the creation or analysis of ground and excited state potential energy surfaces, while others address dynamics, kinetics, and thermochemistry, a major area of interest within JPC A . The use of ML to improve accuracy and efficiency in calculation of molecular properties is also addressed in many articles. …”
mentioning
confidence: 99%
“…In JPC A , the virtual special issue papers span applications to all aspects of chemical dynamics, molecular property prediction, and electronic structure. A large number of contributions within this collection in JPC A address fundamental research into new or adaptation of existing models for applications of ML to physical chemistry spanning many topical areas. Many of the papers relate to using ML/AI and other data-driven models to enhance methods within physical chemistry. A number of contributions address the creation or analysis of ground and excited state potential energy surfaces, while others address dynamics, kinetics, and thermochemistry, a major area of interest within JPC A . The use of ML to improve accuracy and efficiency in calculation of molecular properties is also addressed in many articles. …”
mentioning
confidence: 99%