Abstract:Multiple Instance Learning (MIL) is commonly utilized in weakly supervised whole slide image (WSI) classification. MIL techniques typically involve a feature embedding step using a pretrained feature extractor, then an aggregator that aggregates the embedded instances into predictions. Current efforts aim to enhance these sections by refining feature embeddings through self-supervised pretraining and modeling correlations between instances. In this paper, we propose a convolutional sparsely coded MIL (CSCMIL) … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.