The hot crack sensitivity in metals is suggested to be caused by the supersaturation of vacancies created during the solidification process. Equations have been derived to predict the nucleation and growth of cracks by the condensation of vacancies. The transition temperature from brittle to ductile fracture was found to be related to the decrease in the supersaturation of vacancies due to an annealing process. The hot crack sensitivity was observed to be related to the supersaturation of vacancies, the diffusion rate, and the structure coarseness. The effect of surface active elements such as phosphorous and sulphur in steel alloys is discussed.