In underwater localization systems several sources of error may impact in different ways the accuracy of the final position estimates. Through simulations and statistical analysis it is possible to identify and characterize such sources of error and their relative importance. This is especially of use when an accurate localization system has to be designed within required accuracy prescriptions. This approach allows one to also investigate how much these sources of error influence the final position estimates achieved by an Extended Kalman Filter (EKF). This paper presents the results of experiments designed in a virtual environment used to simulate real acoustic underwater localization systems. The paper intends to analyze the main parameters that significantly influence the position estimates achieved by a Short Baseline (SBL) system. Specifically, the results of this analysis are presented for a proprietary localization system constituted by a surface platform equipped with four acoustic transducers used for the localization of an underwater target. The simulator here presented has the purpose of simulating the hardware system and modifying some of its design parameters, such as the base-line length and the errors on the GPS and Inertial Measurement Unit (IMU) units, in order to understand which parameters have to modify for improving the accuracy of the entire positioning system. It is shown that statistical analysis techniques can be of help in determining the best values of these parameters that permit to improve the performance of a real hardware system.