Abstract:Reinforcement Learning (RL) as a paradigm aims to develop algorithms that allow to train an agent to optimally achieve a goal with minimal feedback information about the desired behavior, which is not precisely specified. Scalar rewards are returned to the agent as response to its actions endorsing or opposing them. RL algorithms have been successfully applied to robot control design. The extension of the RL paradigm to cope with the design of control systems for Multi-Component Robotic Systems (MCRS) poses ne… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.