Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Topology optimization (TO) plays a significant role in industry by providing engineers with optimal material distributions based exclusively on the information about the design space and loading conditions. Such approaches are especially important for current multidisciplinary design tasks in industry, where the conflicting criteria often lead to very unintuitive solutions. Despite the progress in integrating manufacturing constraints into TO, one of the main factors restricting the use of TO in practice is the users’ limited control of the final material distribution. To address this problem, recently, a universal methodology for enforcing similarity to reference structures in various TO methods by applying scaling of elemental energies was proposed. The method, however, requires an expensive hyperparameter sampling, which involves running multiple TO processes to find the design of a given similarity to a reference structure. In this article, we propose a novel end-to-end approach for similarity-based TO, which integrates a machine learning model to predict the hyperparameters of the method, and provide the engineer, at minimal computational cost, with a design satisfying multidisciplinary criteria expressed by the similarity to a reference. The training set for the model is generated based on an academic linear elastic problem, but the model generalizes well to both nonlinear dynamic crash and industrial-scale TO problems. We show the latter by applying the proposed methodology to a real-world multidisciplinary TO problem of a car hood frame, which demonstrates the usefulness of the approach in industrial settings.
Topology optimization (TO) plays a significant role in industry by providing engineers with optimal material distributions based exclusively on the information about the design space and loading conditions. Such approaches are especially important for current multidisciplinary design tasks in industry, where the conflicting criteria often lead to very unintuitive solutions. Despite the progress in integrating manufacturing constraints into TO, one of the main factors restricting the use of TO in practice is the users’ limited control of the final material distribution. To address this problem, recently, a universal methodology for enforcing similarity to reference structures in various TO methods by applying scaling of elemental energies was proposed. The method, however, requires an expensive hyperparameter sampling, which involves running multiple TO processes to find the design of a given similarity to a reference structure. In this article, we propose a novel end-to-end approach for similarity-based TO, which integrates a machine learning model to predict the hyperparameters of the method, and provide the engineer, at minimal computational cost, with a design satisfying multidisciplinary criteria expressed by the similarity to a reference. The training set for the model is generated based on an academic linear elastic problem, but the model generalizes well to both nonlinear dynamic crash and industrial-scale TO problems. We show the latter by applying the proposed methodology to a real-world multidisciplinary TO problem of a car hood frame, which demonstrates the usefulness of the approach in industrial settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.