Abstract:In this paper, a cooperative search method for multiple UAVs is proposed to solve the problem of low efficiency of multi-UAV task execution by using a cooperative game with incomplete information. To improve search efficiency, CBBA (Consensus-Based Bundle Algorithm) is applied to designate the tasks area for each UAV. Then, Independent Deep Reinforcement Learning (IDRL) is used to solve Nash equilibrium to improve UAVs’ collaborations. The proposed reward function is smartly developed to guide UAVs to fly alon… Show more
“…Their algorithm makes use of two modules based on a divide-and-conquer architecture: an environmental sense module that utilizes sensing information and a policy module that is responsible for the optimal policy of the robots. Gao and Zhang [ 161 ] study a cooperative search problem while using MADRL as the solution method. The authors use independent learners on the robots to find the Nash equilibrium solution with the incomplete information available to the robots.…”
Section: Multi-robot System Applications Of Multi-agent Deep Reinforc...mentioning
Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning.
“…Their algorithm makes use of two modules based on a divide-and-conquer architecture: an environmental sense module that utilizes sensing information and a policy module that is responsible for the optimal policy of the robots. Gao and Zhang [ 161 ] study a cooperative search problem while using MADRL as the solution method. The authors use independent learners on the robots to find the Nash equilibrium solution with the incomplete information available to the robots.…”
Section: Multi-robot System Applications Of Multi-agent Deep Reinforc...mentioning
Deep reinforcement learning has produced many success stories in recent years. Some example fields in which these successes have taken place include mathematics, games, health care, and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning, where multiple agents present in the environment not only learn from their own experiences but also from each other and its applications in multi-robot systems. In many real-world scenarios, one robot might not be enough to complete the given task on its own, and, therefore, we might need to deploy multiple robots who work together towards a common global objective of finishing the task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems are of tremendous significance from theoretical and applied standpoints, the latest survey in this domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was not invented. We classify the reviewed papers in our survey primarily based on their multi-robot applications. Our survey also discusses a few challenges that the current research in this domain faces and provides a potential list of future applications involving multi-robot systems that can benefit from advances in multi-agent deep reinforcement learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.