2023
DOI: 10.1109/tgrs.2023.3290468
|View full text |Cite
|
Sign up to set email alerts
|

Coordinate-Based Seismic Interpolation in Irregular Land Survey: A Deep Internal Learning Approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 46 publications
0
1
0
1
Order By: Relevance
“…To evaluate the quality of the reconstructed data with theDIPsgrmethod, we used the metrics Peak Signal-to-Noise Ratio (PSNR), and structural similarity index measure (SSIM) recommended by [21], [26]. PSNR is used to quantify the quality in terms of signal amplitude, and with SSIM, we account for the analysis of the structural features related to the shape of the waveforms i.e., hyperbolic and linear events recorded in the shotgathers.…”
Section: Metricsmentioning
confidence: 99%
“…To evaluate the quality of the reconstructed data with theDIPsgrmethod, we used the metrics Peak Signal-to-Noise Ratio (PSNR), and structural similarity index measure (SSIM) recommended by [21], [26]. PSNR is used to quantify the quality in terms of signal amplitude, and with SSIM, we account for the analysis of the structural features related to the shape of the waveforms i.e., hyperbolic and linear events recorded in the shotgathers.…”
Section: Metricsmentioning
confidence: 99%
“…Esto permite no solo analizar distintas estrategias computacionales para abordar la dispersión de datos, sino también optimizar el uso del tiempo y recursos (Hernandez-Rojas y Arguello, 2022). En la última década, la integración de técnicas de aprendizaje profundo con el conocimiento experto ha emergido como un enfoque prometedor para el análisis de grandes conjuntos de datos (Gardner y Nichols, 2017;Goyes-Peñafiel et al, 2023), lo que supone una oportunidad para su uso en la exploración del subsuelo enfocado en mejorar la calidad y eficiencia en el diseño de geometrías de adquisición geofísica.…”
Section: Introductionunclassified