Abstract:We extend our previous work on learning smooth graph signals from a small number of noisy signal samples. Minimizing the signal's total variation amounts to a non-smooth convex optimization problem. We propose to solve this problem using a combination of Nesterov's smoothing technique and accelerated coordinate descent. The resulting algorithm converges substantially faster, specifically for graphs with vastly varying node degrees (e.g., scale-free graphs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.