Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Balance tasks are critical for performance in acrobatic gymnastics, where athletes often train and compete in mixed-age groups with varying maturational stages. To improve individualized training, in this cross-sectional study, the relationship was examined between strength capacity and balance task performance in female gymnasts at two maturational stages based on peak height velocity (PHV). Methods: Circa-PHV (n = 17, 11.92 ± 1.7 years) and post-PHV (n = 17, 16.47 ± 1.8 years) participants performed static balance tasks (standing on blocks, tandem stance, headstand) while center of pressure (CoP) excursion was recorded, and a proactive balance task (time to stabilization after landing, TTS). Strength assessments included isometric mid-thigh pull, handgrip, countermovement jump (CMJ), and push-up tests. Results: Correlational, regression, and inter-group analyses highlighted differences in strength–balance relationships across groups. Maximal isometric strength and CMJ power were the strongest predictors of static standing balance, with greater predictive strength in the circa-PHV group, underscoring the role of maturation in strength–balance interactions. The results also revealed that strength parameters influenced balance differently depending on the task, suggesting that specific balance types (static–proactive) and tasks (standing–inverted) require distinct strength capacities. Conclusions: Strength’s influence on balance varies by maturational stage, emphasizing the need for tailored training programs to enhance balance and optimize performance in young gymnasts.
Background: Balance tasks are critical for performance in acrobatic gymnastics, where athletes often train and compete in mixed-age groups with varying maturational stages. To improve individualized training, in this cross-sectional study, the relationship was examined between strength capacity and balance task performance in female gymnasts at two maturational stages based on peak height velocity (PHV). Methods: Circa-PHV (n = 17, 11.92 ± 1.7 years) and post-PHV (n = 17, 16.47 ± 1.8 years) participants performed static balance tasks (standing on blocks, tandem stance, headstand) while center of pressure (CoP) excursion was recorded, and a proactive balance task (time to stabilization after landing, TTS). Strength assessments included isometric mid-thigh pull, handgrip, countermovement jump (CMJ), and push-up tests. Results: Correlational, regression, and inter-group analyses highlighted differences in strength–balance relationships across groups. Maximal isometric strength and CMJ power were the strongest predictors of static standing balance, with greater predictive strength in the circa-PHV group, underscoring the role of maturation in strength–balance interactions. The results also revealed that strength parameters influenced balance differently depending on the task, suggesting that specific balance types (static–proactive) and tasks (standing–inverted) require distinct strength capacities. Conclusions: Strength’s influence on balance varies by maturational stage, emphasizing the need for tailored training programs to enhance balance and optimize performance in young gymnasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.