Many synthetic methods for heteropolyoxovanadates and lacunary polyoxovanadates have been developed in recent years. We outline various approaches used to produce new polyoxovanadate species, including heterometal-incorporated complexes of tetravanadates, hexavanadates, decavanadates and dodecavanadates. In particular, three types of synthetic routes are explored; based on i) coordination of metavanadate species to transition metal cations, ii) oxidation of reduced polyoxovanadates, and iii) template synthesis. Metavanadate species can coordinate to metal cations as inorganic macrocyclic ligands to form heteropolyoxovanadates. The incorporation of a heterometal cation into decavanadates has also been reported. The oxidation reaction of reduced polyoxovanadates provides a new route to the formation of the lacunary polyoxovanadates, which can serve as inorganic host molecules. Dodecavanadates are bowl-type molecules of particular structural interest; a chloride anion can be incorporated into the bowl through a template synthesis. Structural transformations between these dodecavanadate species and alkoxopolyoxovanadates are also described.