In the field of energy networks, for their effective functioning, it is necessary to distribute the required load between all online generating units in a proper way to cover the demand. The load schedule is obtained by solving the so-called Economic Dispatch Problem (EDP). The EDP can be solved in many ways, resulting in a power distribution plan between online generating units in the network so that the resulting price per unit of energy is minimal. This article focuses on designing a distributed gradient algorithm for solving EDP, supplemented by models of renewable sources, Battery Energy Storage System (BESS), variable fuel prices, and consideration of multiple uncertainties at once. Specifically, these are: time-variable transport delays, noisy gradient calculation, line losses, and drop-off packet representations. The algorithm can thus be denoted as robust, which can work even in unfavorable conditions commonly found in real applications. The capabilities of the presented algorithm will be demonstrated and evaluated on six examples.