As agonists of TLR7/8, singleâstranded RNAs (ssRNAs) are safe and promising adjuvants that do not cause offâtarget effects or innate immune overactivation. However, low stability prevents them from mounting sufficient immune responses. This study evaluates the adjuvant effects of ssRNA derived from the cricket paralysis virus intergenic region internal ribosome entry site, formulated as nanoparticles with a coordinative amphiphile, containing a zinc/dipicolylamine complex moiety as a coordinative phosphate binder, as a stabilizer for RNAâbased adjuvants. The nanoformulated ssRNA adjuvant was resistant to enzymatic degradation in vitro and in vivo, and that with a coordinative amphiphile bearing an oleyl group (CAâO) was approximately 100â
nm, promoted effective recognition, and improved activation of antigenâpresenting cells, leading to better induction of neutralizing antibodies following single immunization. Hence, CAâO may increase the efficacy of ssRNAâbased adjuvants, proving useful to meet the urgent need for vaccines during pathogen outbreaks.