COOT-Optimized Real-Time Drowsiness Detection using GRU and Enhanced Deep Belief Networks for Advanced Driver Safety
Gunnam Rama Devi,
Hayder Musaad Al-Tmimi,
Ghadir Kamil Ghadir
et al.
Abstract:Drowsiness among drivers is a major hazard to road safety, resulting in innumerable incidents globally. Despite substantial study, existing approaches for detecting drowsiness in real time continue to confront obstacles, such as low accuracy and efficiency. In these circumstances, this study tackles the critical problems of identifying drowsiness and driver safety by suggesting a novel approach that leverages the combined effectiveness of Gated Recurrent Units (GRU) and Enhanced Deep Belief Networks (EDBN), wh… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.