The 1972 U.S. Clean Water Act set forth the generation of biosolids. In Colorado, biosolids land application research began in 1976 and continues today. Pastureland research suggested that sewage effluent could effectively be land applied to benefit aboveground plant growth and to polish water prior to reaching receiving waters. Forest wildfire-affected ecosystems can also benefit from biosolids applications; application rates of up to 80 Mg ha −1 can lead to greater plant establishment, soil microbial activity, and nutrient turnover and reduced nutrient and heavy metal concentrations in runoff below livestock and USEPA drinking water standards. Long-term (24-yr) observations in oil shale-mined lands showed that biosolids (up to 224 Mg ha −1 ) can have a positive effect on microbial-mediated nutrient cycling and, in turn, on aboveground plant community structure. Biosolids applications of up to 40 Mg ha −1 in high-elevation shrubland ecosystems, dominated by Mo-containing shale deposits, can aid in reducing imbalances between Mo and Cu in soils and plants; excessive plant Mo, when consumed by ruminants, can lead to molybdenosis. Biosolids and lime applications (both at 224 Mg ha −1 ) have been shown to improve long-term reclamation success on acid-generating, heavy metal-containing fluvial mine tailings. Thirty years of grazing land research, focused on soil and aboveground plant benefits, illustrate that soil health and plant productivity can be improved to the greatest extent at biosolids application rates close to 10 Mg ha −1 . Finally, 40 yr of dryland agroecosystem research (a) have helped identify biosolids N fertilizer equivalency (∼8 kg N Mg −1 ) and thus dryland winter wheat application rates (e.g., 4.5-6.7 dry Mg ha −1 ); (b) have identified first-year mineralization rates of 25-32%; (c) dispute the "time bomb" theory by showing that plant metal uptake follows an exponential rise to a maximum; (d) showcase economic return to producers via increased wheat grain protein content; (e) suggest that