In this study, both radiation shielding capability and optical properties of prepared SiO2-ZnO-Na2CO3-H3BO3-BaCO3 glass composite with different concentrations of barium carbonate (0–30 mol%) have been studied. Gamma attenuation properties, such as the mass attenuation coefficient (MAC), mean free path (MFP), and exposure build-up factor (EBF), are experimentally and theoretically investigated. The detected XRD patterns for the prepared glass composites confirm their amorphous nature. It is evident from the obtained data that all tested parameters, such as mass density, molar volume, refractive index, dielectric constant, refraction loss (%), and molar refraction, have been increased as BaCO3 mol% increased. At the same time, the results of the optical bandgap show a gradual decrease with increasing barium concentration. It was also found that the mass attenuation coefficients increased with BaCO3 concentration from 0.078 at zero mol% BaCO3 to 0.083 cm2/g at 30 mol%. Moreover, the half-value layer (HVL) and the exposure build-up factor (EBF) up to 40 mfp penetration depth were investigated in addition to the effective atomic number (Zeff) and the corresponding equivalent atomic number (Zeq) at the energy range of 0.015–15 MeV. The produced glass composite might be considered for many shielding applications based on the obtained results that require a transparent shielding material.