Hybrid copper(I) halide materials are currently attracting significant attention due to their exceptional luminescence properties, offering great potential for the development of multifunctional emissive materials with, in addition, eco-friendly features. A binuclear copper iodide complex, based on the [Cu 2 I 2 L 4 ] motif with phosphite derivatives as ligands, has been synthesized and structurally characterized. Photophysical investigations indicate that this complex displays luminescence thermochromic properties, which are characterized by a temperature-dependent change in the relative intensity of two emission bands. The high-contrast luminescence thermochromism, with an important color variation from purple to cyan, is ascribed to the thermal equilibrium of two different excited states. While thermochromism is relatively known for multimetallic complexes, the perfectly controlled thermochromism of the studied compound is unprecedented for a binuclear complex. From theoretical investigations, this original feature is due to the coordination of phosphite ligands, which induces a specific energy layout of the complex, presenting vacant orbitals of varying nature. This single-component, dual-emissive binuclear complex, displaying relevant sensitivity temperature response, presents great potential for luminescence ratiometric thermometry applications. This study underlines the relevance of the ligand engineering strategy in developing original, emissive, and sustainable copper-based materials.