The performance of a 12-mm high-temperature superconducting (HTS) surface coil for in vivo microimaging of mice in a standard 1.5T clinical whole-body scanner was investigated. Systematic evaluation of MR image quality was conducted on saline phantoms with various conductivities to derive the sensitivity improvement brought by the HTS coil compared with a similar room-temperature copper coil. The observed signal-tonoise ratio (SNR) was correlated to the loaded quality factor of the radio frequency (RF) coils and is theoretically validated with respect to the noise contribution of the MR acquisition channel. The expected in vivo SNR gain was then extrapolated for different anatomical sites by monitoring the quality factor in situ during animal imaging experiments. Typical SNR gains of 9.8, 9.8, 5.4, and 11.6 were found for brain, knee, back, and subcutaneous implanted tumors, respectively, over a series of mice.