In this study, polyimide (PI) and polysulfonamide (PSA) were used as base materials, and polyethylene glycol (PEG) was added to successfully prepare PI/PSA/PEG nanofiber membranes through electrospinning technology. Subsequently, water etching was performed on the membranes, utilizing the water solubility of PEG to form the rough wrinkled structure, further enhancing the surface hydrophobicity. The experimental results showed that under the conditions of a spinning voltage of 10 kV, PI/PSA mass fraction of 15 wt.%, and PEG-to-PI/PSA mass ratio of 1/3, the obtained fiber membranes exhibit a uniform morphology (an average diameter of 0.73 µm) and excellent hydrophobicity (the initial water contact angle (WCA) reaching 130.4°). After PEG water etching, the surface of the PI/PSA/PEG hydrophobic membranes formed the rough wrinkled structure, which not only improved their mechanical properties but also further enhanced their hydrophobicity (the initial WCA increasing to 137.9°). Hence, fiber membranes are expected to have broad application prospects in fields such as waterproofing and moisture permeability.