Ball milling, as a cost-effective and eco-friendly approach, has been popular in materials synthesis to solve problems involving toxic reagents, high temperatures, or high pressure, which has the potential for large-scale production. However, there are few reviews specifically concentrating on the latest progress in materials characteristics before and after ball milling as well as the adsorptive application for aqueous pollutants. Hence, this paper summarized the principle and classification of ball milling and reviewed the advances of mechanochemical materials in categories as well as their adsorption performance of organic and inorganic pollutants. Ball milling has the capacity to change materials’ crystal structure, specific surface areas, pore volumes, and particle sizes and even promote grafting reactions to obtain functional groups to surfaces. This improved the adsorption amount, changed the equilibrium time, and strengthened the adsorption force for contaminants. Most studies showed that the Langmuir model and pseudo-second-order model fitted experimental data well. The regeneration methods include ball milling and thermal and solvent methods. The potential future developments in this field were also proposed. This work tries to review the latest advances in ball-milled materials and their application for pollutant adsorption and provides a comprehensive understanding of the physicochemical properties of materials before and after ball milling, as well as their effects on pollutants’ adsorption behavior. This is conducive to laying a foundation for further research on water decontamination by ball-milled materials.