Marine yeasts have versatile applications in the industrial, medical, and environmental fields. However, they have received little attention compared to terrestrial yeasts and filamentous fungi. In this study, a phylogenetic analysis of 11 marine-derived yeasts was conducted using internal transcribed spacers and nuclear large subunit rDNA, and their bioactivities, such as antioxidant, antibacterial, and tyrosinase inhibition activities, were investigated. The 11 marine-derived yeasts were identified to belong to seven species including Geotrichum candidum, Metschnikowia bicuspidata, Papiliotrema fonsecae, Rhodotorula mucilaginosa, Vishniacozyma carnescens, Yamadazyma olivae, and Yarrowia lipolytica, and three strains of these were candidates for new species of the genera Aureobasidium, Rhodotorula, and Vishniacozyma. Most extracts showed antioxidant activity, whereas seven strains exhibited antibacterial activities against Bacillus subtilis. Only Aureobasidium sp. US-Sd3 among the 11 isolates showed tyrosinase inhibition. Metschnikowia bicuspidata BP-Up1 and Yamadazyma olivae K2-6 showed notable radical-scavenging activity, which has not been previously reported. Moreover, Aureobasidium sp. US-Sd3 exhibited the highest antibacterial and tyrosinase inhibitory activities. These results demonstrate the potential of marine-derived yeasts as a source of bioactive compounds for improving industrial applications.