Although copper is an essential trace element for cell function and viability, its excess can lead to protein oxidation, DNA cleavage, and ultimate cell damage. Cells have established a variety of regulatory mechanisms to ensure copper ion homeostasis. In Saccharomyces cerevisiae, copper sensing and response to copper de ciency are regulated by the transcription factor Mac1. Our group has previously reported that in addition to copper, several chromatin proteins modulate Mac1 functionality. In this study, based on a synthetic growth de ciency phenotype, we showed that the Cu/Zn superoxide dismutase Sod1 plays an important role in Mac1 transcriptional activity, in unchallenged nutrient-rich growth conditions. Sod1 is a multipotent cytoplasmic and mitochondrial enzyme, whose main known function is to detoxify the cell from superoxide ions. It has been previously reported that Sod1 also enters the nucleus and affects the transcription of several genes, some of which are involved in copper homeostasis under Cu-depleted (Wood and Thiele, 2009) or only under speci c oxidative stress conditions (Dong et al., 2013;Tsang et al., 2014). We have shown that Sod1 physically interacts with Mac1 transcription factor and is important for the transactivation as well as its DNA binding activities. On the other hand, a constitutively active mutant of Mac1 is not affected functionally by the Sod1 ablation, pointing out that Sod1 contributes to the maintenance of the copper-unchelated state of Mac1. In conclusion, we showed that Sod1-Mac1 interaction is vital for Mac1 functionality, regardless of copper medium de ciency, in unchallenged growth conditions, and we suggest that Sod1 enzymatic activity may modify the redox state of the cysteine-rich motifs in the Mac1 DNA-binding and transactivation domains.