Objective
Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments.
Methods
Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA.
Results
Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17.
Conclusion
CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.