“…With the suitable specification of marginal probabilities and dependence structures, the Gaussian copula can be derived with the principle of maximum entropy [29]. The entropy copula can also be interpreted as the approximation of the copula, for which other types of copula approximation schemes exist [95,97,134,135], such as shuffle of min copula [136,137], Bernstein copula [138,139], checkerboard copula [31,134] or others based on splines or kernels [140][141][142]. Moreover, the entropy based bivariate copula can also be integrated in the vine structure to derive the vine copula [32], which is particularly attractive in modeling the flexible dependence in higher dimensions when parametric copulas fall short in this case [88,132].…”