Chromatin-mediated silencing, including the formation of heterochromatin, silent chromosome territories, and repressed gene promoters, acts to stabilize patterns of gene regulation and the physical structure of the genome. Reduction of chromatin-mediated silencing can result in genome rearrangements, particularly at intrinsically unstable regions of the genome such as transposons, satellite repeats, and repetitive gene clusters including the rRNA gene clusters (rDNA). It is thus expected that mutational or environmental conditions that compromise heterochromatin function might cause genome instability, and diseases associated with decreased epigenetic stability might exhibit genome changes as part of their etiology. We find support of this hypothesis in invasive ductal breast carcinoma, in which reduced epigenetic silencing has been previously described, by using a facile method to quantify rDNA copy number in biopsied breast tumors and pair-matched healthy tissue. We found that rDNA and satellite DNA sequences had significant copy number variation-both losses and gains of copies-compared to healthy tissue, arguing that these genome rearrangements are common in developing breast cancer. Thus, any proposed etiology onset or progression of breast cancer should consider alterations to the epigenome, but must also accommodate concomitant changes to genome sequence at heterochromatic loci. Authors' Statement One of the common hallmarks of cancer is genome instability, including hypermutation and changes to chromosome structure. Using tumor tissues obtained from women with invasive ductal carcinoma, we find that a sensitive area of the genome-the ribosomal DNA gene repeat cluster-shows hypervariability in copy number. The patterns we observe as not consistent with an adaptive loss leading to increased tumor growth, but rather we conclude that copy number variation at repeat DNA is a general consequence of reduced heterochromatin function in cancer progression.