In model-driven engineering, model transformation (MT) verification is essential for reliably producing software artifacts. While recent advancements have enabled automatic Hoare-style verification for non-trivial MTs, there are certain verification tasks (e.g. induction) that are intrinsically difficult to automate. Existing tools that aim at simplifying the interactive verification of MTs typically translate the MT specification (e.g. in ATL) and properties to prove (e.g. in OCL) into an interactive theorem prover. However, since the MT specification and proof phases happen in separate languages, the proof developer needs a detailed knowledge of the translation logic. Naturally, any error in the MT translation could cause unsound verification, i.e. the MT executed in the original environment may have different semantics from the verified MT. We propose an alternative solution by designing and implementing an internal domain specific language, namely CoqTL, for the specification of declarative MTs directly in the Coq interactive theorem prover. Expressions in CoqTL are written in Gallina (the specification language of Coq), increasing the possibilities of reusing native Coq libraries in the transformation definition and proof. CoqTL specifications can be directly executed by our transformation engine encoded in Coq, or a certified implementation of the transformation can be generated by the native Coq extraction mechanism. We ensure that CoqTL has the same expressive power of Gallina (i.e. if a MT can be computed in Gallina, then it can also be represented in CoqTL). In this article, we introduce CoqTL, evaluate its practical applicability on a use case, and identify its current limitations.