Porphyry-related base metal vein and replacement mineralization (i.e., Cordilleran polymetallic mineralization) in the Morococha district, central Peru, is part of a large magmatic-hydrothermal system associated with the emplacement of several late Miocene porphyry intrusions and formation of important Cu-Mo mineralization. Zn-Pb-Ag-Cu veins overprint the giant Toromocho porphyry Cu-Mo deposit in the center of the district and display a typical concentric base metal zonation (Cu → Zn, Pb → Ag) covering an area of approximately 50km 2 .A detailed fluid inclusion study supports the hypothesis that base metal mineralization precipitated from cooled and evolved metal-rich, intermediate-density porphyry-type fluids. In early stages of Cordilleran base metal vein formation, fluid inclusions have low salinities of ~2 to 5 wt % NaCl equiv, CO2 contents of 3 to 10mol %, and homogenization temperatures (Th) of 380° to 340°C. They are similar to intermediate-density fluid inclusions trapped in a milky quartz vein predating Cordilleran polymetallic mineralization, with similar low salinities (3.0-3.8 wt % NaCl equiv) and low CO2 contents (6.5-8 mol %), but higher Th of ~420° to 410°C. During cooling of the intermediate-density fluids from 400° to 300°C, the lithostatic pressure regime changed to a hydrostatic one. The fluids underwent pressure drop as well as phase separation (i.e., unmixing) and lost most of their CO2. They acquired moderate salinities, in some cases intermediate (~up to 16 wt % NaCl) to brine compositions. However, the bulk of the magmatic fluid retained low salinity while it continued to cool under open-system conditions and precipitated tennantite-tetrahedrite, chalcopyrite, enargite, sphalerite, and galena. Upon cooling below 270°C, the fluids deposited abundant rhodochrosite and quartz, while following the boiling curve toward lower P-T conditions. These data record an evolution of mineral precipitation from deep (minimum depth of 2-1.5 km) to shallow environments (300-800 m). Oxygen, hydrogen, and carbon stable isotope data indicate that the hydrothermal fluids have a dominantly magmatic signature and were diluted by meteoric waters during the carbonate stage.Copper (5,000-18,000 µg/g), sulfur (up to 12,000 µg/g), and iron (2,100-6,000 µg/g) concentrations in the intermediate-density fluid inclusions in the milky quartz veins are approximately 5 to 10 times higher than in intermediate-density inclusions of the early Cordilleran base metal veins. The base metals Zn, Pb, and Mn have comparable concentrations between 100 and 1,000 µg/g for both types of fluid. These findings suggest that the fluids identified in Cordilleran polymetallic veins are compositionally similar to the porphyry-type fluids and could have derived from the latter after precipitation of Cu-and Fe-bearing sulfides in a deeper porphyry environment.The new data explain the commonly observed base and precious metal zonation patterns encountered in porphyry-centered districts (e.g., Bingham, Butte) and show that both porphyry and polymet...