X-ray Photoelectron Spectroscopy (XPS) constitutes an elegant way to describe the chemical characteristics of the surface of biological materials. It is thus a unique approach to decipher the interaction between biological materials and tissues. In the case of medical implants, it is thus possible to understand its biocompatibility as well as its integration in the body which can be wanted in the case of prothesis or avoided in the case of JJ-stents. More precisely, XPS can bring valuable information of the interaction between physiological calcification (here bone) and the prosthesis as well as the interaction between pathological calcifications (lithiasis) and the JJ-stent. This mini overview is dedicated to two communities, the physical chemists and the clinicians. In the first part of this overview, after an introduction on the basic principles of XPS, we focus on the theoretical techniques adopted for the computation of XPS spectra of materials.The second part, dedicated to clinicians, describes the use of XPS for the characterization of biological materials. We report which kind of chemical information can be gained by this surfacesensitive technique and how this information has a relevant impact on medical applications.Through different examples, we show that XPS is a strong and very useful tool, and thus receiving a crucial place in medical research.