The major core promoter-binding factor in polymerase II transcription machinery is TFIID, a complex consisting of TBP, the TATA box-binding protein, and 13 to 14 TBP-associated factors (TAFs). Previously we found that the histone H2A-like TAF paralogs TAF4 and TAF4b possess DNA-binding activity. Whether TAF4/TAF4b DNA binding directs TFIID to a specific core promoter element or facilitates TFIID binding to established core promoter elements is not known. Here we analyzed the mode of TAF4b⅐TAF12 DNA binding and show that this complex binds DNA with high affinity. The DNA length required for optimal binding is ϳ70 bp. Although the complex displays a weak sequence preference, the nucleotide composition is less important than the length of the DNA for high affinity binding. Comparative expression profiling of wild-type and a DNA-binding mutant of TAF4 revealed common core promoter features in the down-regulated genes that include a TATA-box and an Initiator. Further examination of the PEL98 gene from this group showed diminished Initiator activity and TFIID occupancy in TAF4 DNA-binding mutant cells. These findings suggest that DNA binding by TAF4/4b-TAF12 facilitates the association of TFIID with the core promoter of a subset of genes.Two types of DNA elements regulate transcription of protein-encoding genes in eukaryotes. Enhancer elements, which may be localized proximally or distally relative to the transcription initiation site, are the binding sites for gene-specific transcription factors. A core promoter, situated close to the transcription start site (TSS), 2 serves as the site on which RNA polymerase II and the general transcription factors bind and assemble into a pre-initiation complex (1, 2). Enhancer-bound transcription factors activate transcription by modulating chromatin structure or by recruiting the transcription machinery to the core promoter.The major core promoter-binding factor within the general transcription apparatus is TFIID, a large complex composed of the TATA-binding protein (TBP) and about 14 TBP-associated factors (TAFs) (for recent reviews see Refs. 3,4). Within TFIID TBP is responsible for recognition and binding of TATA-containing promoters. The TAFs are also important for core promoter recognition, and they bind primarily to non-TATA-box elements, interacting with sequences upstream and downstream to the TATA box (5-13). In addition certain TAF subcomplexes have been reported to specifically bind different core promoter elements. The TAF1⅐TAF2 complex binds to the Initiator element (14) and Drosophila TAF6 and TAF9 crosslinked to the downstream promoter element in the context of TFIID (15), and, as a reconstituted complex, these were shown to associate with a downstream promoter element-containing promoter (16).A feature common to 9 of the 14 TAFs is the histone-fold domain (HFD) (17)(18)(19)(20). The presence of histone-fold TAFs within TFIID led to the proposal that there is a nucleosomallike interaction between HFD TAFs and DNA (21). Recently we reported that the H4-H3-like TAF6...