The morphology- and size-controlled synthesis of branched Pt nanostructures on graphene is highly favorable for enhancing the electrocatalytic activity and stability of Pt. Herein, a facile approach is developed for the efficient synthesis of well-dispersed Pt nanoflowers (PtNFs) on the surface of polydopamine (PDA)-modified reduced graphene oxide (PDRGO), denoted as PtNFs/PDRGO, in high yield. The synthesis was performed by a simple heating treatment of an aqueous solution that contained K2PtCl4 and PDA-modified graphene oxide (GO) without the need for any additional reducing agent, seed, surfactant, or organic solvent. The coated PDA serves not only as a reducing agent, but also as cross-linker to anchor and stabilize PtNFs on the PDRGO support. The as-prepared PtNFs/PDRGO hybrid, with spatially and locally separated PtNFs on PDRGO, exhibits superior electrocatalytic activity and stability toward both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in alkaline solutions.