Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipids and structural advantages of polymers can be obtained using this system for controlled drug delivery. In this study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratios were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181–245 nm and a zeta potential range of 20–30 mV. The stability of the formulation was demonstrated by thermal studies. Cytotoxicity and cellular interaction of cisplatin-loaded LPHNP were investigated using
in vitro
cell-based assays using the A2780 ovarian carcinoma cell line. The pharmacokinetics study in rabbits supported a controlled delivery of cisplatin with enhanced mean residence time and half-life. These studies suggest that cisplatin loaded LPHNP have promise as a platform for controlled delivery of cisplatin in cancer therapy.