Photocatalytic hydrogen production from water splitting is an environmentally friendly and cost‐effective technology to achieve green hydrogen. In recent years, bimetallic sulfides (BMS) have been considered as promising candidates compared to monometallic sulfides due to the tunable energy band structure, higher number of active sites, and good chemical stability, resulting in high performance of photocatalytic hydrogen production. Herein, recent progress of BMS in photocatalytic hydrogen production has been addressed comprehensively. First, two commonly employed methods for synthesizing BMS with tailored morphological characteristics are discussed and compared. Then, the main functions of BMS are unraveled to aid in promoting photocatalytic hydrogen evolution performance intrinsically. Detailed applications of BMS both as a single photocatalyst and in heterojunction composite systems of three typical categories with unique properties and catalytic performance are summarized, focusing on their charge transfer behaviors and hydrogen production performance. In the end, research trends and prospects of BMS‐based photocatalysts are also proposed. This review is believed to unveil new advances and features of BMS‐based nanomaterials toward practical benefits and future research for highly efficient and robust photocatalytic H2 generation catalysts.