Purpose
Cornea, the outermost transparent layer of the eye, is the first line of defense against external threats. Following injury, the wound healing response is crucial to corneal repair and regeneration, yet its underlying mechanism is poorly understood. Our study was designed to investigate the role of dsRNA and its regulatory network in corneal wound healing.
Methods
A corneal wound healing model was established via the surgical removal of half of the corneal surface and adjoining limbus. RNase III was then used to clarify the role of dsRNA in corneal wound closure and RNA-seq was performed to investigate the mechanism of dsRNA in the healing process. Related gene expression was assessed using immunofluorescence staining, qPCR, and Western blot. Flow cytometry and scratch assay were used to analyze the proliferation and migration of limbal stem/progenitor cells (LSCs) in vitro and functional analysis of the target genes was completed using the corneal wound healing model.
Results
Corneal wound healing was delayed and impaired when the dsRNAs were removed or damaged following RNase III digestion. The dsRNAs released following corneal damage activate type I interferon (IFN-I) signaling, primarily IFNβ, via the corneal epithelium and neutralizing IFNβ or blocking IFN-I signaling delays corneal wound closure. Moreover, our data identified MMP13 as a downstream effector of IFNβ where its expression promotes LSC proliferation and enhances corneal epithelial reconstruction in vivo.
Conclusions
The dsRNA induced IFNβ-MMP13 axis plays a key role in corneal wound healing.