Ovarian cancer is one of the most common types of cancer among women, which often leads to death. As a result, developing new techniques for diagnosing this disease at early stages, preventing the high rate of death in women with high-risk, and minimizing the large side effects on the economy must be considered seriously by experts. For early diagnosis of this disease, it is necessary to utilize ultrasound integrated with photo acoustic technique in which the minimal amount of cost, energy, and laser are acquired. In addition, the procedure should provide sufficient pulse to make ovaries tissue able to take image. This new clinical diagnosis technique utilizes modest pulse energy and low electrical voltage so that, it could be assumed as a proper alternative for conventional ultrasound in showing the image of abdominal ovary tissue. The researcher aims at presenting a real time photo acoustic-imaging probe for imaging human ovaries tissue; thus, this study seeks to investigate the effect of low electrical voltage and modest laser pulse energy while providing enough pulse for ovarian tissue as well as implementation issue. This model utilizes dual modality imaging approach and describes several researches carried out in order to establish dual-model imaging consisting ultrasound and photo acoustic. The system can accomplish near-simultaneous ultrasound and photo acoustic imaging. The model is capable of reaching thorough diagnostic information based on the tissue where there is only individual imaging model with its limitations.