В связи с разработкой методики измерения параметров потоков «жидкость-газ» кориолисовыми массовыми расходомерами (КМР) предпринята попытка оценить влияние присутствия пузырьков газа на параметры колебаний измерительной трубки КМР. Разработана балочная конечноэлементная модель прямой трубки, реализованная средствами пакета MATLAB. Поток флюида описывается в 1D-приближении, присутствие газового пузырька моделируется локальным (с точностью до размера конечного элемента) изменением плотности потока в месте расположения пузырька в данный момент времени. Возбуждение поперечных колебаний трубки осуществляется с помощью внешней гармонической силы, приложенной в центре трубки. Частота возбуждения задается равной частоте собственных колебаний заполненной трубки с пузырьком. Выполнена серия численных экспериментов, в которых варьировались объемная доля газовой фазы и скорость флюида. Выявлена зависимость от этих факторов обусловленного эффектом Кориолиса фазового сдвига между колебаниями плеч расходомера. Оценена погрешность определения массового расхода, обусловленная присутствием пузырьков. Проведена серия экспериментов по наблюдению пузырьковых эффектов с промышленным расходомером ДУ15. Найдено качественное согласие результатов расчетов и экспериментов. Ключевые слова: кориолисов массовый расходомер; газожидкостный поток; численные эксперименты; метод конечных элементов. Введение Кориолисовы расходомеры (КМР) за три десятилетия, прошедших с момента их массового появления на рынке, получили широкое распространение в самых разных отраслях промышленности и заслужили признание благодаря точности и надежности измерений массовых расходов и плотностей однородных, однофазных флюидов. История создания этих устройств и основные этапы в развитии их теории и практического применения подробно описаны в обзорах [1-4], краткий обзор современных исследований приведен в работе [5]. Для однофазных потоков теория измерений разработана достаточно глубоко для того, чтобы предсказывать рабочие характеристики КМР данной конструкции или проектировать приборы с заданными характеристиками [6]. Успехи в применении КМР к однофазным потокам постоянно стимулируют попытки распространить метод и на многофазные потоки. Возникающие в этом случае задачи весьма разнообразны и сильно различаются по сложности в зависимости от количества фаз, их физических свойств и списка характеристик потока, подлежащих измерению. Очевидно, что не все из этих задач могут быть решены «неинвазивно», так, как это делается в однофазном случае-по наблюдениям за движениями трубопровода, возбуждаемыми потоком флюида. Наиболее простым является случай двухфазного потока, в котором одна из фаз является мелкодисперсной и равномерно распределенной по объему трубопровода. В этом случае флюид можно рассматривать как гомогенную жидкость с некоторым эффективным набором свойств [7] и для измерения его массового расхода использовать те же средства, что и для однофазных потоков. Примером являются потоки «жидкость-газ» при достаточно большой приведенной скорости жидкости, когда газ присутствуе...